Back to home page
We present the fidelity and utility measures for the synthetic data, where fidelity measures include various intrinsic properties of synthetic data, and utility measures refer to the performance of synthetic data when used for downstream applications.
Let F
denote fidelity, and A
denote application.
We organize this section based on different data types.
For structured data, we study tabular data (S1
), trajectory data (S2
), and graph data (S3
).
For unstructured data, we consider image data (U1
).
For each data type, we first outline the data analysis performed on it or the target of the analysis. We then provide the measures (i.e., evaluation metrics) for each data analysis task.
S1-F1. $k$-way marginals
Measure: similarity, concretely:
$L_1$ distance (average error): Zhang et al., 2014, Gaboardi et al., 2014, Bindschaedler et al., 2016, Asghar et al., 2019, McKenna et al., 2021, Zhang et al., 2021, Cai et al., 2021, Liew et al., 2022
$L_2$ distance: Chen et al., 2015
$L_\infty$ distance (max error): Asghar et al., 2019, Vietri et al., 2020, Aydore et al., 2021
Kullback-Leibler (KL) divergence: Hardt et al., 2012
Kolmogorov-Smirnov distance (Massey Jr, 1951)]: Gambs et al., 2021
S1-F2. Queries, including:
Random linear queries: Xu et al., 2017
Range queries: Hardt et al., 2012, Li et al., 2014, Zhang et al., 2021, Liew et al., 2022
Parity queries: Gaboardi et al., 2014
Aggregation queries: Fan et al., 2020
Measure: similarity by $L_1$ distance
S1-F3. Matrix
Measure: similarity, concretely
Frobenius distance: Li et al., 2011, Jiang et al., 2013
Mean Correlation Delta: Gambs et al., 2021
S1-F4. Similarity w.r.t. pairwise distances: Xu et al., 2017
S1-F5. Distinguishing game Bindschaedler et al., 2016
S1-F6. Classification
Measure: similarity, concretely
S1-A1. Classification
Below are different classifiers:
SVM: Zhang et al., 2014, Chen et al., 2015, Xu et al., 2017, Chanyaswad et al., 2019, Zhang et al., 2021, Cai et al., 2021, Beaulieu-Jones et al., 2019, Astolfi et al., 2021, Jordon et al., 2019, Harder et al., 2020
Boosting: Bindschaedler et al., 2016, Gambs et al., 2021, Fan et al., 2020, Jordon et al., 2019, Long et al., 2021, Harder et al., 2020
Random forest: Bindschaedler et al., 2016, Fan et al., 2020, Beaulieu-Jones et al., 2019, Hyland et al., 2017, Jordon et al., 2019, Harder et al., 2020
Decision tree: Bindschaedler et al., 2016, Fan et al., 2020, Jordon et al., 2019, Harder et al., 2020
Bagging: Jordon et al., 2019, Long et al., 2021, Harder et al., 2020
Multilayer Perceptron: Jordon et al., 2019, Long et al., 2021, Harder et al., 2020
Measure: accuracy/misclassification rate/Area Under the Receiver Operating Characteristics (AUROC)
S1-A2. Regression
Below are different regression methods:
Kernel Ridge Regression: Chanyaswad et al., 2019
Linear regression: Gambs et al., 2021, Fan et al., 2020, Beaulieu-Jones et al., 2019, Astolfi et al., 2021, Jordon et al., 2019, Long et al., 2021, Harder et al., 2020
Measure: root mean square error (RMSE) (Bishop, 2006), AUROC
S1-A3. Clustering
Measure:
Silhouette Coefficient (Rousseeuw, 1987): Chanyaswad et al., 2019
Normalized Mutual Information: Fan et al., 2020
S2-F1. Count queries
Measure: similarity, concretely:
S2-F2. Frequent patterns
Measure: similarity, concretely:
S2-F3. Longest common subsequence (LCSS) (Vlachos et al., 2002): Wang and Sinnott, 2017
S2-F4. Spatial location
Measure: similarity, concretely
S2-F5. Length distribution
Measure: similarity, concretely
S2-F6. Diameter distribution
Measure: similarity, concretely:
S2-F7. Trip distribution
Measure: similarity, concretely:
S3-F1. (Joint) degree distribution: Sala et al., 2011, Mir and Wright, 2012, Xiao et al., 2014, Jorgensen et al., 2016, Chen et al., 2020, Zhang et al., 2021, Yang et al., 2020
S3-F2. Assortativity: Sala et al., 2011, Wang and Wu, 2013
S3-F3. Shortest/average/weighted path distance: Sala et al., 2011, Wang and Wu, 2013, Xiao et al., 2014
S3-F4. Global/local clustering coefficients: Mir and Wright, 2012, Wang and Wu, 2013, Jorgensen et al., 2016, Chen et al., 2020
S3-F5. Attribute-edge correlations (Hellinger distance): Jorgensen et al., 2016, Chen et al., 2020
S3-F6. Community stucture
Measure:
S3-F7. Parameter estimation: Lu and Miklau, 2014
S3-F8. Statistics
Edges: Wang and Wu, 2013, Jorgensen et al., 2016, Chen et al., 2020, Zheng et al., 2021
Measure: count
S3-F9. Spectrum (node) analysis
Measure:
S3-A1. Reliable Email (Garriss et al., 2006): Sala et al., 2011
S3-A2. Influence maximization (Chen et al., 2009): Sala et al., 2011
S3-A3. Link prediction: Zheng et al., 2021, Yang et al., 2020
The readers can refer to Costa et al., 2007 for a comprehensive survey of the common utility metrics in graph.
U1-F1. Inception Score (IS) (Salimans et al., 2016): Liu et al. 2019, Wang et al., 2020, Zhang et al., 2018, Xu et al., 2019, Yang et al., 2020, Schwabedal et al., 2020, Chen et al., 2020, Long et al., 2021, Zhang et al., 2019, Chen et al., 2022, Xin et al., 2022
U1-F2. Frechet Inception Distance (FID) (Heusel el al., 2017): Schwabedal et al., 2020, Chen et al., 2020, Long et al., 2021, Liew et al., 2022, Chen et al., 2022, Xin et al., 2022
U1-F3. Kernel Inception Distance (KID) (Bińkowski et al., 2018): Liew et al., 2022
U1-F4. Jensen-Shannon Scores (Fuglede et al., 2004): Zhang et al., 2018, Xu et al., 2019, Yang et al., 2020
U1-A1. Classification
Measure: accuracy/error: Liu et al. 2019, Xie et al. 2018, Frigerio et al. 2019, Zhang et al., 2018, Xu et al., 2019, Yang et al., 2020, Chen et al., 2020, Torkzadehmahani et al., 2019, Triastcyn et al., 2020, Long et al., 2021, Wang et al., 2021, Ma et al., 2020, Imtiaz et al., 2021, Harder et al., 2020, Chen et al., 2022, Zhang et al., 2021, Triastcyn et al., 2020
U1-A2. Segmentation
Measure: Hausdorff distance: Schwabedal et al., 2020
U1-A3. Data Debugging
Measure: visualization: Chen et al., 2020, Triastcyn et al., 2020, Augenstein et al., 2020